NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD

WATER WELL

(Each)

CODE 642

DEFINITION

A hole drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer.

PURPOSE

Provide water for livestock, wildlife, irrigation, human, and other uses.

Provide for general water needs of farming/ranching operations.

Facilitate proper use of vegetation on rangeland, pastures and wildlife areas.

CONDITION WHERE PRACTICE APPLIES

This practice applies on all land uses where the underground supply of water is sufficient in quantity and quality for the intended purpose.

This practice applies only to production wells. Specifically excluded are any types of wells installed solely for monitoring or observation purposes; injection wells; and piezometers. The standard does not apply to pumps installed in wells; above ground installations, such as pumping plants, pipelines, and tanks; temporary test wells; and decommissioning of wells (ASTM D 5299).

CRITERIA

Suitability of Site. The availability of ground water for its intended use at the site shall be determined by using reliable local experience and reviewing all available relevant geologic maps and reports; well records maintained by state and federal agencies; and design, construction, and maintenance records of nearby wells. An appropriate level of

investigation, including test well drilling, is conducted on-site, as needed, prior to well construction to determine site-specific hydrogeologic conditions.

The site shall be suitable for safe operation of the drilling equipment.

Well Head Protection. Wells shall be located at safe distances from potential sources of pollution, including unsealed abandoned wells. All wells shall be located a minimum of 300 feet down gradient and/or 100 feet up gradient of all potential sources of pollution, unless greater distances are required by local, state, federal regulations and ordinances. See the Vermont Accepted Agricultural Practices for regulations on proper setbacks. Potential sources of pollution may include, but are not limited to: existing, abandoned or proposed waste storage facilities; bunk or tower silos; barnyards and feedlots; domestic septic system; fuel tanks, etc. Wells shall also be located a safe distance from agricultural fields that now or in the future will receive applications of manure, fertilizer and pesticides. The allowable distance shall be based on consideration of site-specific hydrogeologic factors and shall comply with requirements of all applicable state or local regulations or construction codes and NRCS standards.

Surface runoff and drainage that might reach the wellhead from potential areas of contamination, such as those used by livestock, shall be diverted.

Wells shall be located a safe distance from both overhead and underground utility lines and other safety hazards.

Conservation practice standards are reviewed periodically, and updated if needed. To obtain the current version of this standard, contact your local Natural Resources Conservation Service office or visit the electronic Field Office Tech Guide.

Borehole. Drilled, jetted, bored, and driven wells shall be sufficiently round, straight, and of adequate diameter, to permit satisfactory installation of inlet, well casing, filter pack, and annular seal, and passage of tremie pipe (including couplings), if used.

Use of Casing. Casing shall be installed to seal out undesirable surface or shallow ground water and to support the side of the hole through unstable earth materials. Casing shall be used in the installation of all wells in Vermont. Where the well is designed to intercept bedrock, the casing shall be adequately seated into the bedrock. The intake portion of a well through stable geologic formations may not require casing.

Casing Diameter: Casing diameter shall be sized to permit satisfactory installation and efficient operation of the pump, and large enough to assure that uphole velocity is 5 feet per second or less, to protect against excessive head loss.

Materials. Casings may be of steel, iron, stainless steel, copper alloys, plastic, fiberglass, or other material of equivalent strength and durability consistent with the intended use of the water and the maximum anticipated differential head between the inside and outside of the casing.

Steel well casings shall meet or exceed requirements specified in ASTM A 589. Steel pipe manufactured for other purposes may be used if the quality of the pipe meets or exceeds requirements specified in ASTM A 589.

Only steel pipe casings shall be used in driven wells.

To prevent galvanic corrosion, dissimilar metals shall not be joined.

Plastic casings made of acrylonitrile-butadiene-styrene (ABS), polyvinyl chloride (PVC), or styrene-rubber (SR) shall conform to material, dimensional and quality requirements specified in ASTM F 480.

If the water is to be used for human consumption, plastic pipe shall be approved by the National Sanitation Foundation.

Plastic pipe manufactured for water or irrigation pipelines may be used if the quality

NRCS-VT DECEMBER 2005 equals or exceeds requirements specified in ASTM F 480.

Filament-wound fiberglass casings (glass-fiber-reinforced-thermosetting-resin pipe, RTRP) may be used if material meets requirements specified in ASTM D 2996. Tests for long-term cyclic pressure strength, long-term static pressure strength, and short-term rupture strength as required in ASTM D 2996 are not needed because the pipe is to be used for well casing. Joints shall meet requirements specified in section 3.8, ASTM F 480.

Fiberglass pressure pipe, (also called reinforced plastic mortar pipe, RPMP, or fiberglass pipe with aggregate) shall meet or exceed requirements specified in ASTM D 3517.

Casing Strength. Well casing wall thickness shall be sufficient to withstand all anticipated static and dynamic pressures imposed on the casing during installation, well development and use. Required casing strength shall be determined as shown in NEH Part 631, Chapter 33, Investigations for Ground Water Resources Development.

Joint Strength. Joints for well casings shall have adequate strength to carry the load due to the casing length and still be watertight, or shall be mechanically supported during installation to maintain joint integrity. Such mechanically supported casings shall terminate on firm material that can adequately support the casing weight.

Screen. Well screens shall be installed in any geologic material likely to produce silt or sand. Well screens may be constructed of commercially manufactured screen sections, well points, or field-perforated sections.

The screen shall be constructed with the slot width determined from aquifer samples (Part 631, NEH, Chapter 33). Perforation by any method is allowable provided proper slot size and entrance velocity limits can be met. Screen open areas can range from 1 percent for field-perforated screens to 25 percent or more for continuous wire-wrapped screens. To assure good well efficiency, open areas should be designed to approximate aquifer porosity. High open area percentages also make well development more effective. The length and

open area of the screen shall be sized to limit entrance velocity of water into the well to less than or equal to 0.1 foot per second (Part 631, NEH, Chapter 33, Example 33-2).

Depth of the aquifer below ground surface and the thickness of aquifer to be penetrated by the well shall govern the position of the screen in the well.

Maximum drawdown shall not be permitted below the top of the highest screen or pump intake.

Seals (Packers). Telescoped screen assemblies shall be provided with one or more sand-tight seals between the top of the telescoped screen assembly and casing.

Filter Pack. Installation of a filter pack around the well screen shall be considered under the following conditions: presence of a poorly graded, fine sand aquifer; presence of a highly variable aquifer, such as alternating sand and clay layers; presence of a poorly cemented sandstone or similar aquifer; a requirement for maximum yield from a low-yielding aquifer; and holes drilled by reverse circulation.

Pre-packed Well Screens. For heaving or caving sands, silty or fine-grained aquifers, and for horizontal or angled wells, a commercial pre-packed well screen may be substituted for a conventionally installed (by tremie) filter pack.

Installation. Casing shall extend from above the ground surface down through unstable earth materials to an elevation of at least 2 feet into stable material or to the top of the screen.

All wells shall be cased to a sufficient height (minimum of 12 inches) above the ground surface to prevent entry of surface and near-surface water.

Casing for artesian aquifers shall be sealed into overlying, impermeable formations in such a manner as to retain confining pressure.

If a zone is penetrated that is determined or suspected to contain water of quality unsuitable for the intended use, the zone shall be sealed to prevent infiltration of the poorquality water into the well and the developed portion of the aquifer.

Well Development. Well development shall be performed to repair damage done to the

formation by the drilling process, and to alter the physical characteristics of the aquifer surrounding the borehole so that water will flow more freely to the well.

The method of well development used shall be selected based on geologic character of the aquifer, type of drilling rig, and type of screen.

Aquifer Development. For massive, unfractured rock that is unresponsive to well development procedures, the use of aquifer stimulation techniques may be considered to improve well efficiency and specific capacity. Techniques may include dry ice, acidizing, explosives, or hydrofracturing, depending on the composition and structure of the formation. Explosives shall not be used.

Grouting and Sealing. The annulus surrounding the permanent well casing at the upper terminus of the well shall be filled with mortar containing expansive hydraulic cement (ASTM C 845), or bentonite-based grout. The length of the grout seal shall be no less than 10 feet and not less than the minimum specified in state or locally applicable construction codes.

If the water is intended for human consumption, the casing shall be surrounded at the ground surface by a 4-inch thick concrete slab extending at least 2 feet in all directions.

A positive seal (grouted in place) or packer shall be provided between the casing and the less pervious material overlying the aquifer of artesian wells, and in all aquifers where comingling of waters is undesirable.

Access Port. An access port with a minimum diameter of 0.5 inch shall be installed to allow for unobstructed measurement of depth of the water surface, or for a pressure gage for measuring shut-in pressure of a flowing well. Access ports and pressure gages or other openings in the cover shall be sealed or capped to prevent entrance of surface water or foreign material into the well. Removable caps are acceptable as access ports.

Disinfection. Wells shall be disinfected immediately following their construction or repair to neutralize any contamination from equipment, material or surface drainage introduced during construction. The

disinfection process shall comply with all local or state requirements.

Water Quality Testing. Sampling and testing shall comply with all applicable federal, state, and local requirements. These requirements vary according to the water quality parameters associated with the intended use(s) of the water.

Water Quantity. The required quantity of water shall be computed. If the peak demand is greater than the well yield, a storage reservoir shall be made a component of the practice or other sources shall supplement the well.

CONSIDERATIONS

The potential for adverse interference with existing nearby production wells shall be evaluated in planning.

The potential for ground water overdraft and the long-term safe yield of the aquifer shall be considered in planning.

If practicable, wells shall be located in higher ground and up gradient from sources of surface contamination or flooding. In determining gradient, both pumped and unpumped conditions shall be considered.

Potential effects of installation and operation of the well on cultural, historical, archeological, or scientific resources at or near the site shall be considered in planning.

PLANS AND SPECIFICATIONS

Plans and specifications shall be prepared for specific field sites in accordance with this standard and shall describe the requirements for applying the practice to achieve its intended uses. As a minimum, documentation shall include drillers log of the formations encountered, GPS location of the practice, the depth of the well, and capacity of the well in gallons per minute.

OPERATION AND MAINTENANCE

An operation and maintenance (O&M) plan shall be prepared for the well and any other associated conservation practices. The owner shall sign the O&M plan to indicate an understanding of the requirements and commitment to operate and maintain this practice as specified. A plan for maintenance of a well shall be prepared. The well construction records shall be kept on file with the maintenance plan by the owner/operator. As a minimum, the plan shall include a statement of identified problems, corrective action taken, date, and specific capacity (yield per unit drawdown) of well before and after corrective action was taken.

Hydrofracturing or other aquifer stimulation techniques shall be reported to the NRCS field office.

REFERENCES

National Engineering Handbook, Part 631, Chapter 33, <u>Investigations for Ground Water</u> Resources Development.